关于示波器测量电源纹波时该考虑的方方面面
时间:2020-01-16  浏览次数:663

  纹波是电源的核心指标,但如何准确测量纹波确实一个被广泛忽略的问题。也许您认为不就是示波器交流耦合,然后把探头点在电源上嘛?事实远非如此,本文为您呈现纹波测试的正确方式。

  在十几年前,很多公司的电源测试标准中都有明确的规定,要求使用1:1 探头进行测量。因为这种探头不会损失示波器的测量档位,比如示波器原来最小档位是2mv/div,使用1:1探头就仍然可以通过这个档位测量纹波,即可以准确测量出10mv以内的纹波。但是由于这种探头的带宽只能做到6MHz左右,所以随着开关电源频率的提升,这种探头便不再适合使用。

  目前常用的电源测量探头是10:1无源探头、100:1无源探头、高压差分探头。探头的选择上首先要考虑电压范围,被测电压不要超出探头允许的范围。比如说一般的10:1的无源探头,其低频耐压值是300VRMS,且随着频率的升高而降低。如图1所示。使用之前要测量信号的电压范围在此范围内。否者将无法进行正确的测量。

  除此之外,还需要考虑探头衰减比对底噪的放大,从而判断信号的真实有效部分。采用探头测量时的示意图如图2所示,其中Gn1是虚拟的一个噪声源,表示示波器的本低噪声,而Gn2表示探头的本底噪声。由于信号经过了探头的衰减,为了还原真实信号的大小,示波器内部会对信号再进一步放大,而此时Gn1和Gn2也就跟着被放大,其放大倍数就是衰减比的倒数。所以衰减倍数越大,其测量系统的本底噪声也就被放大的越多。

  例如使用500:1高压差分探头进行测量,示波器本底噪声是1mv,探头噪声为为1mv,这样累加噪声是2mv,再经过500倍的放大,其本底噪声就达到了1V。此时就需要考虑,1V的噪声是否在允许范围内。如果您的被测系统纹波本身也就只有1V或者更小,那1V的噪声显然是不允许的。

  本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

  许多基于微控制器的系统都有模拟和数字信号。即使看起来是完全数字的系统也不完全是数字的,因为存在振铃和串扰等模拟效应。因此,对系统中的信号通常需要同时持有模拟和数字的视角。这正是混合信号示波器(MSO)可以帮助到你的地方。混合信号示波器同时具有示波器的功能和逻辑分析仪的部分功能。最常见的混合信号示波器配置有4个模拟通道和16个数字通道,它们最适合用于嵌入式微处理器板的查错。图1所示的处理器板框图包含诸如电源、时钟、模数转换器(ADC)输入和数模转换器(DAC)输出等模拟信号,也有并行和串行的数字信号。并行数字信号包括CPU和GPIO接口的数字和******线。以太网、SATA、PCIe、SPI、I2C和UART等接口则是高速和低速串行数据

  在线制作数字示波器的经常见到的人,DSO必须具有数模转换单元,根据d/a转换电路可分为两种模式:1.特殊ADC芯片+单片机,2.在转换器内部使用单片机ADC计数。对于第一个模型,我尝试了两个,该电路稍微复杂一点,组件更难以完成,对于初学者来说很难。第二种结构相对简单,易于制造,但是具有很大的缺点,即带宽较窄, 示波器的带宽仅为7.7KHz。国内用户和STC单芯片AVR生产,但实际带宽小于10KHz。您也可以选择使用FusionPCB制作PCB板,而无需自己焊接。步骤1:代码最近用Arduino示波器看到了一个网友,它可能比上面的第二种方法更容易使用,但结果并不理想,带宽很窄。因此,我想尝试一下,没有解决此问题的好方法

  数字示波器适用于测量快速脉冲信号,同时配有高增益放大器,所以灵敏度高,可观测微弱信号。在航空、航天、电子工业产品调试、测试中,数字示波器的应用也越来越普遍。现在数字示波器不再仅限于测量波形的脉冲参数,通过FFT的时/频变换可测试频谱,通过时钟可获得信号抖动图。 数字示波器适用于测量快速脉冲信号,同时配有高增益放大器,所以灵敏度高,可观测微弱信号。在航空、航天、电子工业产品调试、测试中,数字示波器的应用也越来越普遍。现在数字示波器不再仅限于测量波形的脉冲参数,通过FFT的时/频变换可测试频谱,通过时钟可获得信号抖动图。因此它是测试人员首选的多用途测量仪器。1 捕获单脉冲随机信号有些信号在系统启动时间才会

  最简单的探头是连接被测电路与电子示波器输入端的一根导线,复杂的探头由阻容元件和有源器件组成。简单的探头没有采取屏蔽措施很容易受到外界电磁场的干扰,而且本身等效电容较大,造成被测电路的负载增加,使被测信号失线. 探头一般是以两条一个包装,因为现在的示波器都是双通道以上的,为了区分两个通道同时测量时探头,在每根探头上都做好了区分标色,比如色环。2. 拿到探头,先要校准,什么样的探头需要标准呢?除无衰减的探头(1:1)外,都需要校准。校准是探头首次与一台示波器使用时必需要校准,换不同的台示波器测量时,都要校准。3. 校准后的探头可进入测量,测量时,请注意,在不知道被测电路电压情况下,尽可能的选择探头衰减档位,这样预防

  当你换怀疑你测试的信号是否是真实的信号波形的时候,应该从4个方面分析示波器对波形的劣化。1.示波器探头的对波形上升沿的影响示波器测试的测试波形并不是实际波形,可能跟实际波形相差很大,而探头在里面起到主要因素。因为它上面有很多寄生参数。针对是串联级联的情况。而我们接触的是探头的带宽这个参数。对于矩形波带宽与上升沿有个转换关系。从公式上可以看出,用一个3倍是待测信号频率带宽的探头,探头的上升沿时间就已经等于被测信号的上升沿时间了。假设100mhz的信号,测试一个33m的矩形波。上升沿时间为30ns,但是经过100m带宽探头示波器测试变成42ns。此时还没有加上示波器本身的带宽。有些探头的厂商标的是RMS带宽,计算公式如下。2 探头

  示波器作为一种通用的测试测量工具,通常主要用来定性的测试某个电路的信号特征。但有时我们也需要在一个较长的时间段内分析信号的偶发特性或电路的稳定性,这时使用RIGOL数字示波器的波形录制及回放、分析功能就可以方便地帮你进行长时间的信号分析。它最多达20万帧的硬件波形录制及多种波形分析的功能给您使用示波器带来了更加丰富的测试应用体验。本文将对RIGOL数字示波器的波形录制功能的应用进行详细介绍,让大家更好地理解这一功能,以便达到更好地测试效果。1、波形录制设置波形录制可以对输入通道(CH1-CH2或CH1-CH4)中的波形进行录制。图1为波形录制界面。在此界面可设置录制时相邻两帧波形的时间间隔及想要录制的波形终止帧数。波形录制时可根据

  适用于Altera的Agilent InfiniiVision MSO N5434A FPGA动态探头技术资料

  【报名】在RISC-V应用中实现MultiZone安全性|Microchip 安全解决方案系列在线研讨会

  站点相关:信号源与示波器分析仪通信与网络视频测试虚拟仪器高速串行测试嵌入式系统视频教程其他技术综合资讯




上一篇:海口?仰光直飞航线开通   下一篇:陕西省3位政协委员谈“三个经济”和高质量发展